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Main Message

S HiGh'DiMeNsIoNal o Things get weird in high

N\~ - . .
S GeOmEiRy I InTultivE dimensions
» v’& w’ e g5 » Volume and surface area of
, . - d-ball goes to 0 as d — oo
» Majority of volume of d-ball
is near surface and along
"equators" of the ball
» Any two random points in
d-ball are (almost) orthogonal




Volume of Unit Ball - Section 2.4.1

(d+1)-ball

@ V;(r) := volume of d-ball with radius r

> Vd(r) = I"dVd(l)

@ S,(r) := area of d-sphere (surface area of
(d + 1)-ball) with radius r

> Sd(r) = rde(l)

@ View V,(r) as union of (d — 1)-spheres with
radii from Otor
> Vd fO Sd 1 dx
> Notlce that 94 (r) = Su_1(r)




Volume of Unit Ball - Section 2.4.1

e Since V,(r) = rV4(1), need to
just find V(1)

@ V;.1(1) can be viewed as union
of d-balls with radii between O
and 1

1
V(1) = 2/0 V(1 — x2)2)dx
1
2 —x? 5 x
2av,) [ (1=
3

1 1 d e
:v,j,(1)/O (1 — )4 du

4 1 d
2 v,(1)B <2, 3t 1)
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The Beta and Gamma functions

Gamma Function Facts
foo s—1 e *dx

( ) = s['(s)
oF(s 1) =slfors e N

F(z) =
r)

s 5

Beta Function Facts

e B(s,1)
@ B(s,t) =

@ B(s,t) =

Student Reading Group

focl

= B(t,s)

I'(s)L(1)
L (s+1)

t ldx

5/18



Volume of Unit Ball - Section 2.4.1

By unrolling the recursion for V,(1), and recognizing the base case
Vo(1) = 1, we have

Va(1) £ Vo (1)B (2, —— 1)

3 JTTG) T(S)
= Vo(1)I' (1/2) 0 ) I‘(é) . I j_ 1
4 275
- dr(9)
Implies that V,(r) = Zjéﬂ)’ and Sy(r) = d‘g’r‘“ (r) = ?r(ddill’)d |



Volume Near the Surface - Section 2.3

Pr{lp| <1—¢}

Define a unit d-ball with radius r as B,(r). For any fixed € > 0, we have

_ VOl (Bd(l — 6)) _ Vd (1 — 6)

_ V()1 — ¢
vol (Bd(l)) Vd(l)
]

<: —ed
Va(1)

o (=] =
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Volume Near the Equator - Section 2.4.2

@ For any fixed unit vector u, most of the volume in a d-ball is made of
points p where

|u.p|:o(1/\/3)

@ Implies most points in the ball are nearly orthogonal to u



Volume Near the Equator - Section 2.4.2

dball o Fix some arbitrary unit vector u

@ H C By(1) such that any p € H satisfies
|u - p| > € for some fixed € > 0.

p— e Consider finding Pr{|u - p| > ¢} for a
\(“M\—F—/ B ¢ point p uniformly at random chosen
e e from B,(1)




Volume Near the Equator - Section 2.4.2

@ Geometrically,

vol(H)  vol(H)
vol(B4(1)) — Vu(1)

Pr{lu-p| > e} =

@~ 1)banl

@ We have that

d—1

VOI(H) = 2Vd_1(1) /1 (] _xZ)T dx



Volume Near the Equator - Section 2.4.2

We can further obtain that

1 d—1
Vol(H)é2Vd_1(l)/ (1—x%) 7 dx
2 1 22 (d—1)
< 2Vd_1(1)/ e 2 dx 1—-s<e™
3 Va1(1) /oo _2W=1 |
<2 d—1 d 2 >2 >
=2a-) ( )xe x :>2>1
4 2Vd_1(1) _ -1
= — e 2
e(d—1)



Volume Near the Equator - Section 2.4.2

The probability bound is then
1 Vol(H)
Pr{l|lu-p| > €} =

é 2Va_1 (1) o 62(42*1)
eld— V(1)

2 (d—
3 2e” <dz .
ed—1)B (3,5 +1)
a2
4 2e 2
- (€= =)

avd—1B (3,45 +1)



Volume Near the Equator - Section 2.4.2

Define f(d) := *[B (3,4 +1). Can show that f(d) is monotonically
increasing for d 2 0 by taking derivative and seeing that f'(d) > 0 for d > 0.
Thus for d > 1, we have that

f(d)é\zf <2 2+1>
21 11
(L)
3 I'(1/2)I'(3/2)
- 2I(2)
L2 r3)=vnr@3) =%



Volume Near the Equator - Section 2.4.2

Using the previous result, we have that

T u -
- —=

Implies that for any fixed direction u and with probability at least 1 —
we have for a random point p chosen from a d-ball for d > 1 that

|u ‘P| < \/[%

A
|
o
|

AR
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Volume Near the Equator - Section 2.4.2

Theorem 1 (Properties of randomly sampled points on unit ball)

Suppose you randomly sample n points x1,X5, - -+ ,X, i.i.d. from a unit d-ball.
For some k > 1 and probability at least 1 — O(1/n*), these points will satisfy
both conditions:

Q Forall i, ||jx;|| > 1 — Do

. . V2(k+2)Inn
Q Foralli#j, |x;-xj| < (d—\/f)l




Volume Near the Equator - Section 2.4.2

Proof
For Condition 1, fix some point x; and define Ei(l) the error event that

lxi|| < 1— W. We know from earlier that Pr {|jx;|| < 1 — €} < e™,
implying for € = W that
k l 1 ( )Inn
Pr {5[(1)} — Pr{Hle <1-— (—|—)nn} <e~ k-Hdl*d — l/nk+l

d

1

Then, overall error probability Pr {Eli : 5.(1)} < nPr {81(1)} = 1/nk.



Volume Near the Equator - Section 2.4.2

Proof continued

For Condition 2, fix two points x; and x; with i < j and define 81.(2-) as the error

event that |x; - x;| > 7%_2)1111". Fix u = x;/ ||x;|| as the direction of interest.

We know from earlier ford > 1 and /2(k +2)Inn > 1 that

@1 < s V2kE2)Inn | 4 awmwme 4
Pr{é’w _Pr{|u xj| > — < e 3 —

Then, overall error probability Pr {Eli <j: 51.(5)} < (”) Pr {81(2)} < 4



Volume Near the Equator - Section 2.4.2

Proof continued
By union bound, we have that

1 4 1
Pr {Condition 1 or 2 unsatisfied} < c+—=0(—=
mnk nk

So the probability that Conditions 1 and 2 are both satisfied is at least

-0 (1/n"). |



