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Main Message

Things get weird in high
dimensions

I Volume and surface area of
d-ball goes to 0 as d →∞

I Majority of volume of d-ball
is near surface and along
"equators" of the ball

I Any two random points in
d-ball are (almost) orthogonal
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Volume of Unit Ball - Section 2.4.1

Vd(r) := volume of d-ball with radius r
I Vd(r) = rdVd(1)

Sd(r) := area of d-sphere (surface area of
(d + 1)-ball) with radius r

I Sd(r) = rdSd(1)

View Vd(r) as union of (d − 1)-spheres with
radii from 0 to r

I Vd(r) =
∫ r

0 Sd−1(x)dx
I Notice that dVd

dr (r) = Sd−1(r)
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Volume of Unit Ball - Section 2.4.1

Since Vd(r) = rdVd(1), need to
just find Vd(1)

Vd+1(1) can be viewed as union
of d-balls with radii between 0
and 1

Vd+1(1)
1
= 2

∫ 1

0
Vd((1− x2)

1
2 )dx

2
= 2Vd(1)

∫ 1

0
(1− x2)

d
2 dx

3
= Vd(1)

∫ 1

0
u−

1
2 (1− u)

d
2 du

4
= Vd(1)B

(
1
2
,

d
2

+ 1
)
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The Beta and Gamma functions

Gamma Function Facts

Γ(s) :=
∫∞

0 xs−1e−xdx

Γ(s + 1) = sΓ(s)

Γ(s + 1) = s! for s ∈ N
Γ
(1

2

)
=
√
π

Γ
(3

2

)
=
√
π

2

Beta Function Facts

B(s, t) :=
∫ 1

0 xs−1(1− x)t−1dx

B(s, t) = B(t, s)

B(s, t) = Γ(s)Γ(t)
Γ(s+t)
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Volume of Unit Ball - Section 2.4.1

By unrolling the recursion for Vd(1), and recognizing the base case
V0(1) = 1, we have

Vd(1)
1
= Vd−1(1)B

(
1
2
,

d − 1
2

+ 1
)

2
= V0(1)

d−1∏
j=0

B
(

1
2
,

j
2

+ 1
)

3
= V0(1)Γ (1/2)d Γ (1)

Γ
(3

2

) Γ
( 3

2

)
Γ (2)

· · ·
Γ
( d+1

2

)
Γ
( d

2 + 1
)

4
=

2π
d
2

dΓ
( d

2

)
Implies that Vd(r) = 2π

d
2 rd

dΓ( d
2 )

and Sd(r) =
dVd+1

dr (r) = 2π
d+1

2 rd

Γ( d+1
2 )

. �
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Volume Near the Surface - Section 2.3

Define a unit d-ball with radius r as Bd(r). For any fixed ε > 0, we have

Pr {‖p‖ < 1− ε} =
vol (Bd(1− ε))

vol (Bd(1))
=

Vd (1− ε)
Vd(1)

=
Vd(1)(1− ε)d

Vd(1)
≤ e−εd
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Volume Near the Equator - Section 2.4.2

For any fixed unit vector u, most of the volume in a d-ball is made of
points p where

|u · p| = O
(

1/
√

d
)

Implies most points in the ball are nearly orthogonal to u
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Volume Near the Equator - Section 2.4.2

Fix some arbitrary unit vector u
H ⊆ Bd(1) such that any p ∈ H satisfies
|u · p| ≥ ε for some fixed ε > 0.

Consider finding Pr {|u · p| ≥ ε} for a
point p uniformly at random chosen
from Bd(1)
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Volume Near the Equator - Section 2.4.2

Geometrically,

Pr {|u · p| ≥ ε} =
vol(H)

vol(Bd(1))
=

vol(H)

Vd(1)

We have that

vol(H) = 2Vd−1(1)

∫ 1

ε

(
1− x2) d−1

2 dx
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Volume Near the Equator - Section 2.4.2

We can further obtain that

vol(H)
1
= 2Vd−1(1)

∫ 1

ε

(
1− x2) d−1

2 dx

2
≤ 2Vd−1(1)

∫ 1

ε
e−

x2(d−1)
2 dx (1− s ≤ e−s)

3
≤ 2

Vd−1(1)

ε(d − 1)

∫ ∞
ε

(d − 1)xe−
x2(d−1)

2 dx ( 1
ε ≥

x
ε ≥ 1)

4
=

2Vd−1(1)

ε(d − 1)
e−

ε2(d−1)
2
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Volume Near the Equator - Section 2.4.2

The probability bound is then

Pr {|u · p| ≥ ε} 1
=

vol(H)

Vd(1)
2
≤ 2Vd−1(1)

ε(d − 1)Vd(1)
e−

ε2(d−1)
2

3
=

2e−
ε2(d−1)

2

ε(d − 1)B
(1

2 ,
d−1

2 + 1
)

4
=

2e−
a2
2

a
√

d − 1B
( 1

2 ,
d−1

2 + 1
) (ε = a√

d−1
)
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Volume Near the Equator - Section 2.4.2

Define f (d) :=
√

d
2 B

( 1
2 ,

d
2 + 1

)
. Can show that f (d) is monotonically

increasing for d ≥ 0 by taking derivative and seeing that f ′(d) ≥ 0 for d ≥ 0.
Thus for d ≥ 1, we have that

f (d)
1
=

√
d

2
B
(

1
2
,

d
2

+ 1
)

2
≥ 1

2
B
(

1
2
,

1
2

+ 1
)

3
=

Γ(1/2)Γ(3/2)

2Γ(2)
4
=
π

4
(Γ
( 1

2

)
=
√
π, Γ

(3
2

)
=
√
π

2 )
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Volume Near the Equator - Section 2.4.2

Using the previous result, we have that

Pr
{
|u · p| ≥ a√

d − 1

}
1
≤ 2e−

a2
2

a
√

d − 1B
( 1

2 ,
d−1

2 + 1
)

2
≤ 4
πa

e−
a2
2

3
≤ 4
π

e−
a2
2 (a ≥ 1)

Implies that for any fixed direction u and with probability at least 1− 4
πa e−

a2
2 ,

we have for a random point p chosen from a d-ball for d ≥ 1 that
|u · p| ≤ a√

d−1
. �
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Volume Near the Equator - Section 2.4.2

Theorem 1 (Properties of randomly sampled points on unit ball)
Suppose you randomly sample n points x1, x2, · · · , xn i.i.d. from a unit d-ball.
For some k ≥ 1 and probability at least 1− O(1/nk), these points will satisfy
both conditions:

1 For all i, ‖xi‖ ≥ 1− (k+1) ln n
d

2 For all i 6= j, |xi · xj| ≤
√

2(k+2) ln n√
d−1
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Volume Near the Equator - Section 2.4.2

Proof
For Condition 1, fix some point xi and define E(1)

i the error event that
‖xi‖ < 1− (k+1) ln n

d . We know from earlier that Pr {‖xi‖ < 1− ε} ≤ e−εd,
implying for ε = (k+1) ln n

d that

Pr
{
E(1)

i

}
= Pr

{
‖xi‖ < 1− (k + 1) ln n

d

}
≤ e−

(k+1) ln n
d d = 1/nk+1

Then, overall error probability Pr
{
∃i : E(1)

i

}
≤ nPr

{
E(1)

1

}
= 1/nk.
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Volume Near the Equator - Section 2.4.2

Proof continued
For Condition 2, fix two points xi and xj with i < j and define E(2)

i,j as the error

event that |xi · xj| ≥
√

2(k+2) ln n√
d−1

. Fix u = xi/ ‖xi‖ as the direction of interest.

We know from earlier for d ≥ 1 and
√

2(k + 2) ln n ≥ 1 that

Pr
{
E(2)

i,j

}
≤ Pr

{
|u · xj| ≥

√
2(k + 2) ln n√

d − 1

}
≤ 4
π

e−
2(k+2) ln n

2 =
4

πn(k+2)

Then, overall error probability Pr
{
∃i < j : E(2)

i,j

}
≤
(n

2

)
Pr
{
E(2)

1,2

}
≤ 4

πnk .
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Volume Near the Equator - Section 2.4.2

Proof continued
By union bound, we have that

Pr {Condition 1 or 2 unsatisfied} ≤ 1
nk +

4
πnk = O

(
1
nk

)
So the probability that Conditions 1 and 2 are both satisfied is at least
1− O

(
1/nk

)
. �
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