Foundations of Data Science

Avrim Blum, John Hopcroft, and Ravindran Kannan

Christian Howard

June 13, 2020

Main Message

- Things get weird in high dimensions
- Volume and surface area of d-ball goes to 0 as $d \rightarrow \infty$
- Majority of volume of d-ball is near surface and along "equators" of the ball
- Any two random points in d-ball are (almost) orthogonal

Volume of Unit Ball - Section 2.4.1

- $V_{d}(r):=$ volume of d-ball with radius r
- $V_{d}(r)=r^{d} V_{d}(1)$
- $S_{d}(r):=$ area of d-sphere (surface area of $(d+1)$-ball) with radius r
- $S_{d}(r)=r^{d} S_{d}(1)$
- View $V_{d}(r)$ as union of $(d-1)$-spheres with radii from 0 to r
- $V_{d}(r)=\int_{0}^{r} S_{d-1}(x) d x$
- Notice that $\frac{d V_{d}}{d r}(r)=S_{d-1}(r)$

Volume of Unit Ball - Section 2.4.1

- Since $V_{d}(r)=r^{d} V_{d}(1)$, need to just find $V_{d}(1)$
- $V_{d+1}(1)$ can be viewed as union of d-balls with radii between 0 and 1

$$
\begin{aligned}
V_{d+1}(1) & \stackrel{1}{=} 2 \int_{0}^{1} V_{d}\left(\left(1-x^{2}\right)^{\frac{1}{2}}\right) d x \\
& \stackrel{2}{=} 2 V_{d}(1) \int_{0}^{1}\left(1-x^{2}\right)^{\frac{d}{2}} d x \\
& \stackrel{3}{=} V_{d}(1) \int_{0}^{1} u^{-\frac{1}{2}}(1-u)^{\frac{d}{2}} d u \\
& \stackrel{4}{=} V_{d}(1) B\left(\frac{1}{2}, \frac{d}{2}+1\right)
\end{aligned}
$$

The Beta and Gamma functions

Gamma Function Facts

- $\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x$
- $\Gamma(s+1)=s \Gamma(s)$
- $\Gamma(s+1)=s$! for $s \in \mathbb{N}$
- $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
- $\Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2}$

Beta Function Facts

- $B(s, t):=\int_{0}^{1} x^{s-1}(1-x)^{t-1} d x$
- $B(s, t)=B(t, s)$
- $B(s, t)=\frac{\Gamma(s) \Gamma(t)}{\Gamma(s+t)}$

Volume of Unit Ball - Section 2.4.1

By unrolling the recursion for $V_{d}(1)$, and recognizing the base case $V_{0}(1)=1$, we have

$$
\begin{aligned}
V_{d}(1) & \stackrel{1}{=} V_{d-1}(1) B\left(\frac{1}{2}, \frac{d-1}{2}+1\right) \\
& \stackrel{2}{=} V_{0}(1) \prod_{j=0}^{d-1} B\left(\frac{1}{2}, \frac{j}{2}+1\right) \\
& \stackrel{3}{=} V_{0}(1) \Gamma(1 / 2)^{d} \frac{\Gamma(1)}{\Gamma\left(\frac{3}{2}\right)} \frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(2)} \cdots \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}+1\right)} \\
& \stackrel{4}{=} \frac{2 \pi^{\frac{d}{2}}}{d \Gamma\left(\frac{d}{2}\right)}
\end{aligned}
$$

Implies that $V_{d}(r)=\frac{2 \pi \frac{d}{2} r^{d}}{d \Gamma\left(\frac{d}{2}\right)}$ and $S_{d}(r)=\frac{d V_{d+1}}{d r}(r)=\frac{2 \pi \frac{d+1}{2} r^{d}}{\Gamma\left(\frac{d+1}{2}\right)}$.

Volume Near the Surface - Section 2.3

Define a unit d-ball with radius r as $B_{d}(r)$. For any fixed $\epsilon>0$, we have

$$
\operatorname{Pr}\{\|\boldsymbol{p}\|<1-\epsilon\}=\frac{\operatorname{vol}\left(B_{d}(1-\epsilon)\right)}{\operatorname{vol}\left(B_{d}(1)\right)}=\frac{V_{d}(1-\epsilon)}{V_{d}(1)}=\frac{V_{d}(1)(1-\epsilon)^{d}}{V_{d}(1)} \leq e^{-\epsilon d}
$$

Volume Near the Equator - Section 2.4.2

- For any fixed unit vector \boldsymbol{u}, most of the volume in a d-ball is made of points \boldsymbol{p} where

$$
|\boldsymbol{u} \cdot \boldsymbol{p}|=O(1 / \sqrt{d})
$$

- Implies most points in the ball are nearly orthogonal to \boldsymbol{u}

Volume Near the Equator - Section 2.4.2

- Fix some arbitrary unit vector \boldsymbol{u}
- $H \subseteq B_{d}(1)$ such that any $\boldsymbol{p} \in H$ satisfies $|\boldsymbol{u} \cdot \boldsymbol{p}| \geq \epsilon$ for some fixed $\epsilon>0$.
- Consider finding $\operatorname{Pr}\{|\boldsymbol{u} \cdot \boldsymbol{p}| \geq \epsilon\}$ for a point \boldsymbol{p} uniformly at random chosen from $B_{d}(1)$

Volume Near the Equator - Section 2.4.2

- Geometrically,

$$
\operatorname{Pr}\{|\boldsymbol{u} \cdot \boldsymbol{p}| \geq \epsilon\}=\frac{\operatorname{vol}(H)}{\operatorname{vol}\left(B_{d}(1)\right)}=\frac{\operatorname{vol}(H)}{V_{d}(1)}
$$

- We have that

$$
\operatorname{vol}(H)=2 V_{d-1}(1) \int_{\epsilon}^{1}\left(1-x^{2}\right)^{\frac{d-1}{2}} d x
$$

Volume Near the Equator - Section 2.4.2

We can further obtain that

$$
\begin{array}{rlr}
\operatorname{vol}(H) & \stackrel{1}{=} 2 V_{d-1}(1) \int_{\epsilon}^{1}\left(1-x^{2}\right)^{\frac{d-1}{2}} d x & \\
& \stackrel{2}{\leq} 2 V_{d-1}(1) \int_{\epsilon}^{1} e^{-\frac{x^{2}(d-1)}{2}} d x & \left(1-s \leq e^{-s}\right) \\
& \stackrel{3}{\leq} 2 \frac{V_{d-1}(1)}{\epsilon(d-1)} \int_{\epsilon}^{\infty}(d-1) x e^{-\frac{x^{2}(d-1)}{2}} d x & \left(\frac{1}{\epsilon} \geq \frac{x}{\epsilon} \geq 1\right) \\
& \stackrel{4}{=} \frac{2 V_{d-1}(1)}{\epsilon(d-1)} e^{-\frac{\epsilon^{2}(d-1)}{2}} &
\end{array}
$$

Volume Near the Equator - Section 2.4.2

The probability bound is then

$$
\begin{aligned}
\operatorname{Pr}\{|\boldsymbol{u} \cdot \boldsymbol{p}| \geq \epsilon\} & \stackrel{1}{=} \frac{\operatorname{vol}(H)}{V_{d}(1)} \\
& \stackrel{2}{\leq} \frac{2 V_{d-1}(1)}{\epsilon(d-1) V_{d}(1)} e^{-\frac{\epsilon^{2}(d-1)}{2}} \\
& \stackrel{3}{=} \frac{2 e^{-\frac{\epsilon^{2}(d-1)}{2}}}{\epsilon(d-1) B\left(\frac{1}{2}, \frac{d-1}{2}+1\right)} \\
& \stackrel{4}{=} \frac{2 e^{-\frac{a^{2}}{2}}}{a \sqrt{d-1} B\left(\frac{1}{2}, \frac{d-1}{2}+1\right)}
\end{aligned}
$$

$$
\left(\epsilon=\frac{a}{\sqrt{d-1}}\right)
$$

Volume Near the Equator - Section 2.4.2

Define $f(d):=\frac{\sqrt{d}}{2} B\left(\frac{1}{2}, \frac{d}{2}+1\right)$. Can show that $f(d)$ is monotonically increasing for $d \geq 0$ by taking derivative and seeing that $f^{\prime}(d) \geq 0$ for $d \geq 0$. Thus for $d \geq 1$, we have that

$$
\begin{array}{rlrl}
f(d) & \stackrel{1}{=} \frac{\sqrt{d}}{2} B\left(\frac{1}{2}, \frac{d}{2}+1\right) & \\
& \stackrel{2}{\geq} \frac{1}{2} B\left(\frac{1}{2}, \frac{1}{2}+1\right) & \\
& \stackrel{3}{=} \frac{\Gamma(1 / 2) \Gamma(3 / 2)}{2 \Gamma(2)} & & \left(\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2}\right)
\end{array}
$$

Volume Near the Equator - Section 2.4.2

Using the previous result, we have that

$$
\begin{align*}
\operatorname{Pr}\left\{|\boldsymbol{u} \cdot \boldsymbol{p}| \geq \frac{a}{\sqrt{d-1}}\right\} & \stackrel{1}{\leq} \frac{2 e^{-\frac{a^{2}}{2}}}{a \sqrt{d-1} B\left(\frac{1}{2}, \frac{d-1}{2}+1\right)} \\
& \stackrel{2}{\leq} \frac{4}{\pi a} e^{-\frac{a^{2}}{2}} \\
& \frac{3}{\leq} \frac{4}{\pi} e^{-\frac{a^{2}}{2}}
\end{align*}
$$

Implies that for any fixed direction \boldsymbol{u} and with probability at least $1-\frac{4}{\pi a} e^{-\frac{a^{2}}{2}}$, we have for a random point \boldsymbol{p} chosen from a d-ball for $d \geq 1$ that $|\boldsymbol{u} \cdot \boldsymbol{p}| \leq \frac{a}{\sqrt{d-1}}$.

Volume Near the Equator - Section 2.4.2

Theorem 1 (Properties of randomly sampled points on unit ball)
Suppose you randomly sample n points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}$ i.i.d. from a unit d-ball. For some $k \geq 1$ and probability at least $1-O\left(1 / n^{k}\right)$, these points will satisfy both conditions:
(1) For all $i,\left\|\boldsymbol{x}_{i}\right\| \geq 1-\frac{(k+1) \ln n}{d}$
(2) For all $i \neq j,\left|\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}\right| \leq \frac{\sqrt{2(k+2) \ln n}}{\sqrt{d-1}}$

Volume Near the Equator - Section 2.4.2

Proof

For Condition 1, fix some point \boldsymbol{x}_{i} and define $\mathcal{E}_{i}^{(1)}$ the error event that $\left\|\boldsymbol{x}_{i}\right\|<1-\frac{(k+1) \ln n}{d}$. We know from earlier that $\operatorname{Pr}\left\{\left\|\boldsymbol{x}_{i}\right\|<1-\epsilon\right\} \leq e^{-\epsilon d}$, implying for $\epsilon=\frac{(k+1) \ln n}{d}$ that

$$
\operatorname{Pr}\left\{\mathcal{E}_{i}^{(1)}\right\}=\operatorname{Pr}\left\{\left\|\boldsymbol{x}_{i}\right\|<1-\frac{(k+1) \ln n}{d}\right\} \leq e^{-\frac{(k+1) \ln n}{d} d}=1 / n^{k+1}
$$

Then, overall error probability $\operatorname{Pr}\left\{\exists i: \mathcal{E}_{i}^{(1)}\right\} \leq n \operatorname{Pr}\left\{\mathcal{E}_{1}^{(1)}\right\}=1 / n^{k}$.

Volume Near the Equator - Section 2.4.2

Proof continued For Condition 2, fix two points \boldsymbol{x}_{i} and \boldsymbol{x}_{j} with $i<j$ and define $\mathcal{E}_{i, j}^{(2)}$ as the error event that $\left|\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}\right| \geq \frac{\sqrt{2(k+2) \ln n}}{\sqrt{d-1}}$. Fix $\boldsymbol{u}=\boldsymbol{x}_{i} /\left\|\boldsymbol{x}_{i}\right\|$ as the direction of interest. We know from earlier for $d \geq 1$ and $\sqrt{2(k+2) \ln n} \geq 1$ that

$$
\operatorname{Pr}\left\{\mathcal{E}_{i, j}^{(2)}\right\} \leq \operatorname{Pr}\left\{\left|\boldsymbol{u} \cdot \boldsymbol{x}_{j}\right| \geq \frac{\sqrt{2(k+2) \ln n}}{\sqrt{d-1}}\right\} \leq \frac{4}{\pi} e^{-\frac{2(k+2) \ln n}{2}}=\frac{4}{\pi n^{(k+2)}}
$$

Then, overall error probability $\operatorname{Pr}\left\{\exists i<j: \mathcal{E}_{i, j}^{(2)}\right\} \leq\binom{ n}{2} \operatorname{Pr}\left\{\mathcal{E}_{1,2}^{(2)}\right\} \leq \frac{4}{\pi n^{k}}$.

Volume Near the Equator - Section 2.4.2

Proof continued
By union bound, we have that

$$
\operatorname{Pr}\{\text { Condition } 1 \text { or } 2 \text { unsatisfied }\} \leq \frac{1}{n^{k}}+\frac{4}{\pi n^{k}}=O\left(\frac{1}{n^{k}}\right)
$$

So the probability that Conditions 1 and 2 are both satisfied is at least $1-O\left(1 / n^{k}\right)$.

