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introduction
• elevator pitch:
• CS Theory PhD student @ UIUC
• Working with advisor Jeff Erickson on 

computational geometry and topology 
problems

• fun fact:
• Youngest brother is a student here!



setting the stage…

what is a joke about computational 
topology that I can say to start a 
technical talk?

why did the computational topologist 
get lost on the way to the conference? 
because they couldn’t tell the difference 
between a shortcut and a homotopy!



background
• Isomorphic embeddings



background
• Isomorphic embeddings must have the same faces
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Completely different embeddings of 
the same graph due to different faces!



background
• Morph
• Continuous function m such that m(t) is an injective embedding of 

graph G for every t ∈[0, 1], where m(0) = Γ0 and m(1) = Γ1
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background
• Example morphs

Morph examples provided by Jeff Erickson



background
• Invalid morph
• Suppose morph vertex by vertex
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motivation
• Practical uses of morphing between spherical embeddings
• Smoothly morphing meshes on the sphere in graphics context

There exist efficient methods that seem to do well in 
practice but they lack theoretical guarantees that the 

embedding will remain injective through the transformation



planar morphing
Theorem (Cairns, 1944): Given two isomorphic straight line 
triangulations Γ0 and Γ1 in the plane with a triangle outer face, there exists 
a morph from Γ0 to Γ1 . If the embeddings are on n vertices, the morph can 
be constructed in O(2n) morphing steps.

Γ

Γ

Γ’ Γ Γ’

Handling convex outer faces Handling non-triangulations



planar morphing
Proof sketch



planar morphing
Proof sketch: ideal case
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planar morphing
Proof sketch: ideal case
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Now morph between Γ0’ and Γ1’
since they each have (n-1) vertices!



planar morphing
Proof sketch: bad case
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planar morphing
Proof sketch: bad case
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Now morph between Γ0’ and Γm’. Need to 
do similar work to morph from Γm to Γ1.
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planar morphing
Proof sketch: runtime analysis

Want something with a polynomial 
number of morphing steps



planar morphing
Making things more efficient: Revisiting bad case
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Want shared vertex on 
boundary in kernel



planar morphing
Convexifying quadrilaterals
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May need to do this a 
constant number of times 

in the pentagon



planar morphing

Lemma (Alamdari et al., 2017): Given a straight line embedding Γ with 
nonconvex quadrilateral abcd with no vertex inside it and no external 
chords, abcd can be made convex by O(1) unidirectional morphing steps.

Theorem (Alamdari et al., 2017): Given two isomorphic straight line 
embeddings Γ0 and Γ1 in the plane with a shared outer face, there exists a 
morph from Γ0 to Γ1 . If the embeddings are on n vertices, the morph can be 
constructed in O(n) unidirectional morphing steps.

Built off Cairns’ work but uses quadrilateral convexification to ensure they 
always end up in the good case when doing the recurrence



spherical morphing
• Problem: Given two isomorphic spherical embeddings Γ0 and Γ1 
with edges drawn as geodesics, construct a morph from Γ0 to Γ1

Geodesics for non-
antipodal vertices

Geodesics for 
antipodal vertices



spherical morphing
• Important related results:
• (Steinitz, 1922): Proved there is a bijection between planar 3-connected 

graphs and convex polyhedra; also gave constructive proof that one can 
morph between isomorphic convex polyhedra; leads to special case 
morphing algo with poly(n) morphing steps



spherical morphing
• Important related results:
• (Awartani, Henderson, 1987): Proved the following

1. Can morph between two embeddings where every fixed vertex has 
the same longitude in both embeddings; leads to algo with O(1) 
morphing steps

2. Under special conditions, a spherical triangulation with shortest 
geodesics can be efficiently morphed to the southern hemisphere; 
leads to special case morphing algo with O(n) morphing steps



spherical morphing
• Important related results:
• (Cairns, 1944): Proved constructively there exists a morph between 

spherical triangulations with shortest geodesics; leads to algo with 
O(2n) morphing steps

Want poly(n) morphing steps 



spherical morphing
• Theorem (Steinitz, 1922):



spherical morphing
• Theorem (Steinitz, 1922):

Can we morph these 
embeddings with Steinitz?



spherical morphing
• Theorem (Steinitz, 1922):

There exists convex polyhedron 
for spherical embedding



spherical morphing
• Theorem (Steinitz, 1922):

There does not exist convex polyhedron 
for this spherical embedding



spherical morphing
• Lemma (Awartani, Henderson, 1987): Fixed 

longitude morphs



spherical morphing
• Theorem (Awartani, Henderson, 1987): If a triangulation K has a longitude 

l such that no edge intersects l at exactly 1 interior point, then the 
triangulation T := K\star(N) can be morphed into the Southern 
Hemisphere. N

S



spherical morphing
• Proof Sketch:

Normal triangle Properly spanning triangleUse longitude l to assign vertex 
sequence around boundary



spherical morphing
• Proof Sketch:

Given there are n triangles in our triangulation, initialize new embedding with convex 
boundary in Southern Hemisphere and assume we can form a new embedding within 

a specified convex boundary for all embeddings with at most (n-1) triangles



spherical morphing
• Proof Sketch: Properly spanning triangle case

Identify a properly spanning triangle, map it to its exact corresponding triangle 
in the new embedding, update the convex boundary, and construct inductively



spherical morphing
• Proof Sketch: Normal triangle case

Identify a normal triangle, map it to a degenerate triangle in the new 
embedding, update the convex boundary, and construct inductively



spherical morphing
• Proof Sketch:

After forming the new embedding, morph via 
the fixed longitude morph in 1 morphing step



spherical morphing
• Comments: If two input embeddings with the same fixed north pole satisfy 

the longitude condition, then we can morph between the embeddings in 
O(n) morphing steps

• Problem: Given two spherical triangulations Γ0 and Γ1 with short 
geodesics, can we fix some vertex as the North Pole and morph both 
embeddings such that the longitude condition in the theorem is true?

If we can solve this, we can morph both embeddings to the 
Southern Hemisphere and use a central projection to project 
them to the plane, allowing us to use planar morphing tools



spherical morphing
• Cairns (again): Using a similar approach to the planar case, Cairns proved 

that we can morph between two triangulation spherical embeddings, so 
long as their edges are shortest geodesics, in O(2n) morphing steps

• Problem: Can the quadrilateral convexification problem be solved in 
poly(n) morphing steps on the sphere?

Want poly(n) morphing steps 

If one solves the above problem, Cairns’ work can be made 
efficient similarly to the work done by Alamdari et al. 

Henderson et al. gives a fixed longitude morph, potentially 
useful subroutine to solve this problem



spherical morphing
• General Case Comments
• General case allows for long geodesic edges 

• By the intermediate value theorem, we know if an edge is short in one 
embedding and long in the other, we will hit a moment where the 
vertices for that edge are antipodal
• This implies we need to carry information about which geodesic we are using 

since antipodal vertices have infinitely many geodesics



questions?



backup …



planar morphing
• Mention Floater-Gotsman



spherical morphing
• Floater-Gotsman styled approach using Colin de Verdière matrices 
– ideas and challenges



background
• Rotation system: (D, rev, succ)
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