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Abstract

The Bellman equation for value functions and Markov Decision Pro-
cesses (MDPs) are introduced, illustrating a fundamental dilemma in Re-
inforcement Learning when there is a lack of explicit knowledge of transi-
tion probabilities. This dilemma is used to motivate the need for methods
that can efficiently and accurately approximate expectation integrals us-
ing sampled data, motivating the use of more recent methods based on
Reproducing Kernel Hilbert Spaces (RKHS). RKHS are then introduced,
along with the necessary functional analysis background, emphasizing the
definitions and properties of the kernel functions. A discussion on how to
model various probability distributions using RKHS follows, using mea-
sure theory and integral operators to represent and prove various useful
properties. Mean maps are introduced and proofs for marginal approxi-
mations using mean maps and empirical samples are performed. Condi-
tional mean maps are then discussed and a compact form for the empirical
mean map is derived, finishing with results found in [1] for the conver-
gence properties as dataset size grows. This leads into value iteration
approximations using RKHS, where we start by defining MDPs, the Bell-
man equation, and the Bellman operator. Using these definitions and
work on conditional mean maps, we show how to construct a conditional
mean map that can approximate the expectation operator found in the
Bellman operator and discuss some convergence results found in [2] using
the resulting approximate Bellman operator in a value iteration algorithm
scheme.
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1 Motivation

Within the context of Reinforcement Learning, we face the burden of finding
an optimal policy that can be used to obtain an optimal amount of value with
respect to some Markov Decision Process (MDP). We encapsulate this value
using the Bellman equation defined below

V π(x) = R(x, π(x)) + γEx′∼P (·|x,π(x)) [V π(x′)]

where V π is the value function induced by some chosen policy π, subject to
the dynamics P (X ′|X,A), reward function R, state space X , action space A,
and discount factor γ. In an ideal environment, we have all of this information
readily available and our state and action spaces are not overly large, so we can
stick to tabular models that can be efficiently found using dynamic programming
[3]. Unfortunately, in many problems we do not have sufficient knowledge about
our dynamics defined by the transition probabilities P (X ′|X,A). This lack of
information is crucial to being able to perform any sort of dynamic programming
approach to Reinforcement Learning, forcing us to look elsewhere for tackling
our problem. This is a sad result because dynamic programming approaches
have the capability to obtain better optimal policies, ensuring global optimums
in some cases, relative to more model-free approaches that tend to converge to
local optimum.

Fortunately, there are some methods that allow use to use sampled data
to estimate transition probabilities and in turn approximate the Bellman equa-
tion. Of course, even if you can collect enough data to sufficiently estimate these
probabilities, computation of the expectation integral can be computationally
intractable for high dimensional state spaces. This write up discusses develop-
ments of a more recent approach that uses Reproducing Kernel Hilbert Spaces
to construct efficient expectation approximations that can be used to construct
an efficient approximate Bellman equation for use in an approximate dynamic
programming approach to value iteration.

2 Fundamentals of Reproducing Kernel Hilbert
Spaces

Define an arbitrary domain set X and specify the function space of interest to
be RX := {f : X → R}. For a given subspace V ⊂ RX , we assign to it some
inner product 〈·, ·〉 : V × V → R that satisfies the typical properties an inner
product must have for all f, g, h ∈ V and all a, b ∈ R, namely

〈f, g〉 = 〈g, f〉 (Symmetry)

〈af + bg, h〉 = a〈f, h〉+ b〈g, h〉 (Linearity)

〈f, f〉 > 0 (Positive-Definiteness)
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where the Positive-Definiteness property must hold for for all f ∈ V \{f0} where
f0(x) := 0 for all x ∈ X . Using this inner product, we define the norm of an
element f ∈ V to be ‖f‖ :=

√
〈f, f〉. The tuple (X , V, 〈·, ·〉) give us a normed

vector space, which is itself a metric space for the distance measure induced by
the norm. If this normed vector space (X , V, 〈·, ·〉) is complete with respect to
its norm, we call this a Hilbert space, which can also be viewed as a special case
of a Banach space.

We define the evaluation functional Ex : V → R to be such that Ex[f ] :=
f(x) for some point x ∈ X and for all f ∈ V . Notice that this functional is
indeed linear because if we define f(x) = ag(x) + bh(x) for some other g, h ∈ V
and a, b ∈ R, then Ex[f ] = f(x) = ag(x) + bh(x) = aEx[g] + bEx[h]. The
evaluation functional is bounded if there exists an Mx > 0 for a given x such
that

|Ex[f ]| ≤Mx ‖f‖

We impose the requirement that our Hilbert space (X , V, 〈·, ·〉) has a bounded
evaluation functional, allowing us to use Theorem 2.1 to construct a reproducing
property for the resulting space [4, 5].

Theorem 2.1: Riesz Representation Theorem for Hilbert
Spaces

For a Hilbert space (X , V, 〈·, ·〉) and any bounded linear functional
φ : V → R, ∃g ∈ V such that ∀f ∈ V

φ[f ] = 〈f, g〉

Using Theorem 2.1 and our evaluation functional, we observe that for a
given x, ∃ex ∈ V such that Ex[f ] = f(x) = 〈f, ex〉 ∀f ∈ V . We define a
kernel k : V × V → R as k(x, y) = Ex[ey] = ey(x) = 〈ey, ex〉 for all x, y ∈ X .
Notice that this kernel is symmetric and positive definite by the properties of
the inner product, meaning that Ex[ey] = Ey[ex]. Further notice that ∀f ∈ V ,
〈f, k(x, ·)〉 = 〈f, ex〉 = f(x), making it clear our kernel k(·, ·) has the ability
to reproduce a given function evaluated at some point. The resulting Hilbert
space, with the bounded evaluation functional assumption and the resulting
reproducing kernel k(·, ·) is a Reproducing Kernel Hilbert Space (RKHS) and
can be encapsulated with the tuple (X , V, 〈·, ·〉, k) [6, 7].
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3 Expectation Approximations using RKHS

Expectations over Marginals

Let us assume we are given some set E with its corresponding σ-algebra E . We
define P as the set of marginal probability distributions with respect to E on
E. Choose some p ∈ P and define the probability space (E , E, p), where p is
viewed as a probability measure. The expectation of some function within this
probability space is equivalent to

Ex∼p[f(x)] :=

∫
E

f(x)dp(x)

Let us define a separate measure space (E , E, ν) where ν need not be a
probability measure but ∃Mν > 0 such that ν(E) ≤ Mν . Define V as the set
of functions f : E → R that are integrable with respect to the meaures p and
ν within E with the requirement that

∫
E
fdp <∞ and

∫
E
fdν <∞. Define an

inner product 〈·, ·〉ν to be

〈f, g〉ν :=

∫
E

f(x)g(x)dν(x)

for all f, g ∈ V , allowing us to define the norm induced by the inner product as
‖f‖ν :=

√
〈f, f〉ν . Notice that our function space V ensures that 〈f, g〉ν < ∞.

From our discussion earlier on RKHS and the boundedness of 〈·, ·〉ν , we know
there exists some bounded kernel kν on the set E such that ∀f ∈ V and a given
x ∈ E, f(x) = 〈f, kν(x, ·)〉. We construct a RKHS represented by the tuple
(E, V, 〈·, ·〉ν , kν). Let us now define the true and empirical mean maps [2, 8, 1]
as follows

µx(s) := Ex∼p[kν(x, s)] (True Mean Map)

µ̂x(s) :=
1

m

m∑
i=1

kν(xi, s) (Empirical Mean Map)

where Dx := {xi}mi=1 is a dataset drawn i.i.d. from the probability distribution
induced by p. One can view the expectation operation as an infinite dimensional
matrix multiplication, with kν as the infinite dimensional matrix. The image
of kν is V by construction, meaning that µx is a member of V as long as
Ex∼p[kν(x, x)] < ∞ holds [1]. These mean maps are convenient because they
allow us to compute expectations of any function f ∈ V by performing the inner
product 〈µ, f〉ν without needing to perform the actual expectation integral, as
seen in Lemma 3.1
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Lemma 3.1: Computing Expectations with Mean Map

For the mean maps µx(y) and µ̂x(y) and any f ∈ V , performing an inner
product between f and the mean maps have the following result

〈µx, f〉ν = Ex∼p[f(x)]

〈µ̂x, f〉ν =
1

m

m∑
i=1

f(xi)

Proof. It is relatively straight forward to show the result for the empirical mean
map µ̂x and some f ∈ V .

〈µ̂x, f〉ν = 〈 1

m

m∑
i=1

kν(xi, ·), f〉ν (Defn of empirical mean map)

=
1

m

m∑
i=1

〈kν(xi, ·), f〉ν (Linearity of Inner Product)

=
1

m

m∑
i=1

f(xi) (Reproducing Property)

The result for the true mean map is found by expanding the expectation
and moving around integrals by their linear properties.

〈µx, f〉ν = 〈Ex∼p[kν(x, ·)], f〉ν (Defn of true mean map)

=

∫
E

f(y)Ex∼p[kν(x, y)]dν(y) (Defn of 〈·, ·〉ν)

=

∫
E

∫
E

kν(x, y)f(y)dp(x)dν(y) (Defn of expectation operator)

=

∫
E

∫
E

kν(x, y)f(y)dν(y)dp(x) (Rearrange Integrals)

=

∫
E

〈f, kν(x, ·)〉νdp(x) (Defn of 〈·, ·〉ν)

=

∫
E

f(x)dp(x) (Reproducing Property)

= Ex∼p[f(x)] (Defn of Expectation under p)

�

The result in Lemma 3.1 give us an interesting tool for computing expecta-
tions using the true and empirical mean maps. Indeed, these mean maps have
a variety of appealing benefits as mentioned in [1], one of them being that it is
possible to choose a kernel kν such that we guarantee specific distributions map
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to distinct functions in an RKHS via the mean map µx, making µx an injective
map from P → V . We call these appropriate choices for kν characteristics. This
property holds for a variety of common kernels on Rd, the Gaussian, Laplace,
and B-spline kernels being examples [8]. In the context where we do not know
our true probability distribution p, making use of the empirical mean map µ̂x
is sufficient by Lemma 3.2 for a sufficiently large empirical dataset.

Lemma 3.2: Empirical Mean Map convergence to True Mean
Map

The empirical mean map µ̂x(y) converges to the true mean map µx(y)

in the RKHS norm ‖·‖ν with a rate of Op(m
− 1

2 ) for an empirical dataset
size m.

Proof. Recall that kν is non-zero and bounded above within E, meaning that
∃M > 0 such that kν(x, y) ≤ M for all x, y ∈ E. Also notice that for each
xi ∈ Dx and some s ∈ E, E[kν(xi, s)] = Ex∼p[kν(x, s)] = µx(s) since Dx is
comprised of i.i.d. samples drawn from p. By the boundedness property of kν
on E, we know that K(xi, x) ∈ [0,M ] for all x ∈ E and any xi ∈ Dx. Fix x ∈ E
and see that by Hoeffding’s inequality, we have that

P (|µ̂x(x)− µx(x)| ≥ ε) ≤ 2 exp

(
−2mε2

M2

)
for some ε > 0. We then bound the probability that the absolute difference
between µ̂x and µx is less than some ε by recalling that P (e) = 1 − P (ec) for
some event e, thus resulting in

P (|µ̂x(x)− µx(x)| ≤ ε) = 1− P (|µ̂x(x)− µx(s)| ≥ ε)

≥ 1− 2 exp

(
−2mε2

M2

)
For some 0 < δ < 1, assume with probability at least 1 − δ that |µ̂x(x) −

µx(x)| ≤ ε holds. Using the bound above, we choose 1−2 exp
(
− 2mε2

M2

)
= 1− δ,

resulting in ε = M
√

1
2m ln

(
2
δ

)
. Thus we have that for any x ∈ E that

|µ̂x(x)− µx(x)| ≤M

√
1

2m
ln

(
2

δ

)
Define t∗ = arg supt∈E |µ̂x(t)− µx(t)| and notice that the bound above still

holds for |µ̂x(t∗) − µx(t∗)| since t∗ is an element of E. Using the definition for
‖·‖ν , we then show that
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‖µx − µ̂x‖ν ≤ ‖|µ̂x(t∗)− µx(t∗)|1‖ν
= |µ̂x(t∗)− µx(t∗)| ‖1‖ν
= |µ̂x(t∗)− µx(t∗)|ν(E)

1
2

≤M
1
2
ν M

√
1

2m
ln

(
2

δ

)

where 1(y) = 1 for all y ∈ E. We see then that ‖µx − µ̂x‖ν ∈ O
(
m−

1
2

)
for a

fixed δ. Thus, in probability we find that the empirical mean map µ̂x converges

to the true mean map µx with a rate of Op

(
m−

1
2

)
with respect to the RKHS

norm ‖·‖ν . �

Higher Order Moments and Joint Distributions

Let us consider two reproducing kernel Hilbert spaces (EX , VX , 〈·, ·〉X , kX) and
(EY , VY , 〈·, ·〉Y , kY ) respectively dependent on the measure spaces (EX , EX , νX)
and (EY , EY , νY ) with the property that the measures are bounded on their
respective spaces. Suppose we have a joint distribution pXY and the marginal
distribution pX . We define the uncentered covariance operator CXX(s, t) :=
Ex∼pX [kX(x, s)kX(x, t)] for all s, t ∈ EX and find that this construction results
in the property seen in Lemma 3.3.

Lemma 3.3: Inner Product with Covariance Operator

For some f ∈ VX , the uncentered covariance operator CXX has the
property that

〈f, CXXf〉X = Ex∼pX [(f(x))
2
]

Proof. Let us first recognize that the operation CXXf is equivalent to an inte-
gral operator in the measure space related to νX , thus giving us that CXXf :=∫
EX

CXX(·, s)f(s)dνX(s). Using this definition and the definition of 〈·, ·〉X
based on measure νX , we work out the following
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〈f, CXXf〉X =

∫
EX

f(y) (CXXf) (y)dνX(y) (Defn 〈·, ·〉X)

=

∫
EX

f(y)

∫
EX

CXX(y, s)f(s)dνX(s)dνX(y) (Defn CXXf)

=

∫
EX

f(y)

∫
EX

f(s)

∫
EX

kX(x, y)kX(x, s)dpX(x)dνX(s)dνX(y)

(Defn CXX)

=

∫
EX

(∫
EX

kX(x, s)f(s)dνX(s)

)2

dpX(x)

(Integral rearranging)

=

∫
EX

f(x)2dpX(x) (Reproducing property)

= Ex∼pX [(f(x))
2
]

�

We now define the cross-covariance operator CXY (s, t) := E(x,y)∼pXY [kX(x, s)kY (y, t)].
Using this definition, a similar property to that seen in Lemma 3.3 is shown be-
low in Lemma 3.4.

Lemma 3.4: Inner Product with Covariance Operator

For some f ∈ VX and g ∈ VY , the uncentered cross-covariance operator
CXY has the property that

〈f, CXY g〉X = E(x,y)∼pXY [f(x)g(y)]

Proof. Similar to Lemma 3.3, the operation CXY g is equivalent to an inte-
gral operator in the measure space related to νY , thus allowing the definition
CXY g :=

∫
EY

CXY (·, s)g(s)dνY (s). Using this definition and the definition of

〈·, ·〉X based on measure νX , we can work out the following
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〈f, CXY g〉X =

∫
EX

f(t) (CXY g) (t)dνX(t) (Defn 〈·, ·〉X)

=

∫
EX

f(t)

∫
EY

CXY (t, s)g(s)dνY (s)dνX(t) (Defn CXY g)

=

∫
EX

f(t)

∫
EY

g(s)

∫
EY ×EX

kX(x, t)kY (y, s)dpXY (x, y)dνY (s)dνX(t)

(Defn CXY )

=

∫
EY ×EX

(∫
EX

kX(x, t)f(t)dνX(t)

)(∫
EY

kY (y, s)g(s)dνY (s)

)
dpXY (x, y)

(Integral rearranging)

=

∫
EY ×EX

f(x)g(y)dpXY (x, y) (Reproducing property)

= E(x,y)∼pXY [f(x)g(y)]

�

Conditional Distributions

It is of interest to find some mean map µY |x ∈ VY that is capable of repre-
senting conditional distributions P (Y |X = x), for some given x ∈ EX , such
that 〈g, µY |x〉Y = EY |X=x [g(Y )]. It was found in [1] that we can construct the

operator UY |X := CY XC
−1
XX and specify µY |x(y) =

(
UY |XkX(x, ·)

)
(y) to obtain

the desired property for the inner product 〈g, µY |x〉Y . Further, it was found in
[1] that using a finite dataset DXY = {(xi, yi)}mi=1 drawn i.i.d. from pXY , we
can estimate UY |X using the estimator

ÛY |X(s, t) = Φ(s) (K + λmI)
−1

ΥT (t) (1)

for s ∈ Ey and t ∈ Ex whereKij := kx(xi, xj), Φ(s) := [kY (y1, s), · · · , kY (ym, s)],
Υ(t) = [kX(x1, t), · · · , kX(xm, t)], and for some regularization parameter λ > 0
to help ensure the inverse exists on the finite dataset. Using this estimator, we
arrive at a compact estimator for µY |x found in Lemma 3.5.

Lemma 3.5: Empirical Conditional Mean Map Representation

Using a finite dataset DXY = {(xi, yi)}mi=1 drawn i.i.d. from pXY , a
conditional mean map µY |x has an estimate of the form

µ̂Y |x(y) =

m∑
i=1

βi(x)kY (yi, y)
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Proof. Using estimate ÛY |X(s, t) from (1) and the definition µY |x(y) =
(
UY |XkX(x, ·)

)
(y),

we find µ̂Y |x(y) with the following steps

µ̂Y |x(y) =
(
ÛY |XkX(x, ·)

)
(y)

=

∫
Ex

ÛY |X(y, t)kX(x, t)dνx(t)

=

∫
Ex

Φ(y) (K + λmI)
−1

ΥT (t)kX(x, t)dνx(t)

= Φ(y) (K + λmI)
−1
∫
Ex

ΥT (t)kX(x, t)dνx(t)︸ ︷︷ ︸
ΨT (x)

= Φ(y) (K + λmI)
−1

ΨT (x)︸ ︷︷ ︸
βT (x)

=

m∑
i=1

βi(x)kY (yi, y)

where β(x) = [β1(x), · · · , βm(x)]. �

Lemma 3.5 is interesting since it shares a familiar appearance to the empirical
mean map defined for marginals except in the case of marginals, the kernel is
weighted an equal 1

m across all samples. The fact this conditional variant weights
the kernel evaluations within the dataset differently makes sense since we need
to capture the conditional behavior.

Now the quality of the estimate ÛY |X is important to understand since this
estimate decides how well µ̂Y |x approximates µY |x. From [1], we have the fol-
lowing convergence theorem, Theorem 3.1.

Theorem 3.1: Convergence of ÛY |X to UY |X

Assume CY XC
3
2

XX is Hilbert-Schmidt. Then
∥∥∥ÛY |X − UY |X∥∥∥

HS
∈

Op
(
λ1/2 + λ−3/2m−1/2

)
, where ‖·‖HS is the Hilbert-Schmidt norm. If

we choose the regularization term such that λ→ 0 and mλ3 →∞, then∥∥∥ÛY |X − UY |X∥∥∥
HS
→ 0 in probability.

4 Value Iteration Approximation via RKHS

Within the context of reinforcement learning, we are generally first presented
with a Markov Decision Process (MDP) of the form M = (X ,A, R, P, γ) where
X is the set of possible states, A is the set of possible actions, R : X × A→ R
is a reward function that maps state-action pairs to some reward value, P is a
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conditional distribution P (X ′|X,A) representing the transition probabilities of
going from a given state-action pair (x, a) ∈ X × A to some new state x′ ∈ X ,
and 0 < γ < 1 is referred to as the discount factor. Out ultimate goal is to find
some policy π : X → A such that we obtain an optimum amount of value, given
the properties of M , with respect to the value function V π as defined below

V π(x) := E

 ∞∑
h=0

γh−1rh

∣∣∣∣∣∣
x0 = x

ah = π(xh)
rh = R(xh, ah)

 (2)

We can reshape (2) into the form V π(x) = R(x, π(x))+γEx′∼P (·|x,π(x)) [V π(x′)],
providing a useful recursive form. If we assume we have a policy π∗ that opti-
mizes the amount of value that can be obtained from our MDP M , this policy
satisfies the Bellman Optimality equations as defined in Definition 4.1.

Definition 4.1: Bellman Optimality Equations

An optimal policy π∗ has a corresponding value function V ∗ := V π
∗

such
that the following Bellman optimality conditions hold ∀x ∈ X

V ∗(x) = (T V ∗) (x)

π∗(x) = arg max
a∈A

{
R(x, a) + γEx′∼P (·|x,a) [V ∗(x′)]

}
where T : RX → RX is called the Bellman operator and for some V ∈ RX
it is define as

(T V ) (x) = max
a∈A

{
R(x, a) + γEx′∼P (·|x,a) [V (x′)]

}
Within the context of tackling MDPs like those defined above, there are

times we do not know what the transition probabilities P (X ′|X,A) are. This
lack of crucial information requires us either approximate the Bellman operator
in some form or use other very different approaches. With the foundational work
we did prior, we are able to approach approximating the Bellman operator via
sampled data, using this sampled data to construct a conditional mean map
that approximates the expectation term in the Bellman operator.

From here, we define two reproducing kernel Hilbert spaces (X , VX , 〈·, ·〉X , kX)
and (X ×A, VXA, 〈·, ·〉XA, kXA) where VX ⊂ RX and VXA ⊂ RX×A. We as-
sume that the measure for 〈·, ·〉X is νX and the induced norm is defined as
‖·‖X and similarly for the measure and norm associated with 〈·, ·〉XA. Using
Lemma 3.5, we construct a dataset D := {(x′i, ai, xi)}mi=1 that is drawn i.i.d.
from P (X ′|X,A). We then define the empirical mean map to be
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µ̂(x,a)(x
′) :=

m∑
i=1

βi(x, a)kX(x′i, x
′)

where if we define W := (K + λmI)
−1

with Kij = kXA ((xi, ai), (xj , aj)) and
regularization parameter λ, we define βi(x, a) to be

βi(x, a) :=

m∑
j=1

Wij

∫
X×A

kXA ((xj , aj), (s, t)) kXA ((x, a), (s, t)) dνXA(s, t)

=

m∑
j=1

WijkXA ((xj , aj), (x, a)) (Reproducing property)

By Theorem 3.1, we know that µ̂(x,a) will converge to µ(x,a) for all (x, a) ∈
X × A as we increase our dataset size m. Let us now define Ê(x,a)[f ] :=

〈µ̂(x,a), f〉X . When f ∈ VX , we know that Ê(x,a)[f ] ≈ Ex′∼P (·|x,a) [f(x′)]. When
f /∈ VX , it is clear the accuracy of this operator is dependent on how close f is to
some element in VX . Regardless, we are now able to replace Ex′∼P (·|x,a) [V (x′)]

with Ê(x,a)[V ] in the Bellman operator, producing an approximate Bellman op-
erator defined as

(
T̂ V

)
(x, a) := R(x, a) + γÊ(x,a)[V ] (3)

The benefit of this new expectation approximation is that after constructing
the mean maps, each expectation has a cost of O(m). Now work in [2] provides
holistic bound for the value function approximation and resulting greedy policy
with respect to the true optimal policy π∗ and true optimal value function V ∗.
Let us first define a value iteration algorithm based on the approximate Bellman
operator. Assume first that we are given an arbitrary initial value function V̂0.
Using the approximate Bellman operator T̂ , we update our value function using
the recursion V̂j+1 ← T̂ V̂j where V̂j is the jth estimate. Work in [2] found that

our approximate Bellman operator T̂ is a γ-contraction in the infinity norm for

bounded Banach functions. This implies that
∥∥∥T̂ V − T̂ V ′∥∥∥ ≤ γ ‖V − V ′‖ for

any V, V ′ that are within a Banach space of bounded functions.
Using our value iteration algorithm, it is possible to show that with the γ-

contraction property of T̂ that we converge to a fixed point V̂ ∗. In [2], they
bound the difference between the jth iterate V̂j and the fixed point using

∥∥∥V̂j − V̂ ∗∥∥∥
∞
≤ γj

1− γ

∥∥∥V̂1 − V̂0

∥∥∥
∞

clearly showing the distance in the infinity norm between our iterate V̂j and

the fixed point V̂ ∗ shrink with increasing number of iterations. Now for any
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estimate V̂ , define Ṽ := ΠXV as the projection of V̂ into VX . Now suppose we
perform the value iteration for κ steps, arriving at our estimate for the optimal
value as V̂κ. Define π̂κ(x) := arg maxa∈AR(x, a) + γÊ(x,a)[V̂κ] as the greedy

policy associated with V̂κ. From [2], we have Theorem 4.1.

Theorem 4.1: Error of Value Iteration with Approximate Bell-
man Operator

An optimal policy π∗ has a corresponding value function V ∗ := V π
∗

such
that the following Bellman optimality conditions hold ∀x ∈ X

‖V πκ − V ∗‖∞ ≤
2γ

(1− γ)2

(
γκ
∥∥∥V̂1 − V̂0

∥∥∥
∞

+ 2
∥∥∥V ∗ − Ṽ ∗∥∥∥

∞

+ sup
(x,a)

∥∥µ̂(x,a) − µ(x,a)

∥∥
X

∥∥∥Ṽ ∗∥∥∥
X

)

Theorem 4.1 provides a holistic view of where error might arise. The first
term expresses the initial error generated between the initial guess value function
V̂0 and the first one generated using the approximate Bellman operator, V̂1. The
second term corresponds to the error between the optimal solution V ∗ and the
projection ΠXV

∗ into the set VX . This second term can be reduced by crafting
a richer function RKHS VX . The latter term corresponds to the error with
our empirical conditional mean map. As we increase the dataset size we use
to construct it and choose a regularization parameter λ accordingly, this term
should reduce to 0 in probability.
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